Prior influence in linear regression when the number of covariates increases to infinity
نویسندگان
چکیده
It is becoming more typical in regression problems today to have the situation where “p > n”, that is, where the number of covariates is greater than the number of observations. Approaches to this problem include such strategies as model selection and dimension reduction, and, of course, a Bayesian approach. However, the discrepancy between p and n can be so large, especially in genomic data, that examining the limiting case where p → ∞ can be a relevant calculation. Here we look at the effect of a prior distribution on the coefficients, and in particular characterize the conditions under which, as p → ∞, the prior does not overwhelm the data. Specifically, we find that the prior variance on the growing number of covariates must approach zero at rate 1/p, otherwise the prior will overwhelm the data and the posterior distribution of the regression coefficient will equal the prior distribution.
منابع مشابه
Positive-Shrinkage and Pretest Estimation in Multiple Regression: A Monte Carlo Study with Applications
Consider a problem of predicting a response variable using a set of covariates in a linear regression model. If it is a priori known or suspected that a subset of the covariates do not significantly contribute to the overall fit of the model, a restricted model that excludes these covariates, may be sufficient. If, on the other hand, the subset provides useful information, shrinkage meth...
متن کاملWhen the classical & quantum mechanical considerations hint to a single point; a microscopic particle in a one dimensional box with two infinite walls and a linear potential inside it
In this paper we have solved analytically the Schrödinger equation for a microscopic particle in a one-dimensional box with two infinite walls, which the potential function inside it, has a linear form. Based on the solutions of this special quantum mechanical system, we have shown that as the quantum number approaches infinity the expectation values of microscopic particle position and square ...
متن کاملLiu Estimates and Influence Analysis in Regression Models with Stochastic Linear Restrictions and AR (1) Errors
In the linear regression models with AR (1) error structure when collinearity exists, stochastic linear restrictions or modifications of biased estimators (including Liu estimators) can be used to reduce the estimated variance of the regression coefficients estimates. In this paper, the combination of the biased Liu estimator and stochastic linear restrictions estimator is considered to overcom...
متن کاملDifferenced-Based Double Shrinking in Partial Linear Models
Partial linear model is very flexible when the relation between the covariates and responses, either parametric and nonparametric. However, estimation of the regression coefficients is challenging since one must also estimate the nonparametric component simultaneously. As a remedy, the differencing approach, to eliminate the nonparametric component and estimate the regression coefficients, can ...
متن کاملAsymptotic Properties of Bridge Estimators in Sparse High-dimensional Regression Models By
We study the asymptotic properties of bridge estimators in sparse, highdimensional, linear regression models when the number of covariates may increase to infinity with the sample size. We are particularly interested in the use of bridge estimators to distinguish between covariates whose coefficients are zero and covariates whose coefficients are nonzero. We show that under appropriate conditio...
متن کامل